
Shortcuts to Better Spring Ordering

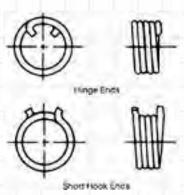
Specifications for Compression Springs

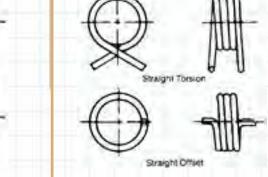
When ordering please give the following information as completely as possible:

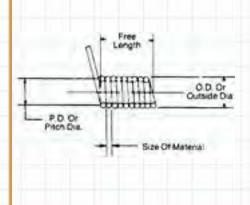
- Ree length maximum/nainimum
- Controlling diameter outside diameter maximum, inside diameter minimum, pitch diameter, works inside (dia. hole), works over (dia. shall)
- Number of coils
- Wire size decimal size if possible
- Material type and grade
- · Loads at deflected positions
- Style of ends (see illustrations)
- Right or left hand wound
- · Finish (plain unless otherwise specified)
- Maximum solid length
- Frequency of compression

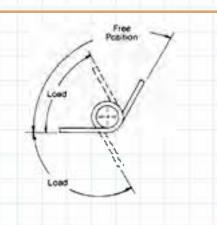
TYPE OF END FINISHES

Plain Enes Collect Peget Hand Total Gods - Alt vs Colls (N)




Squated Or Clased Enas Not Ground - Corted Right Hand TOW Corte + Active Corts + 2



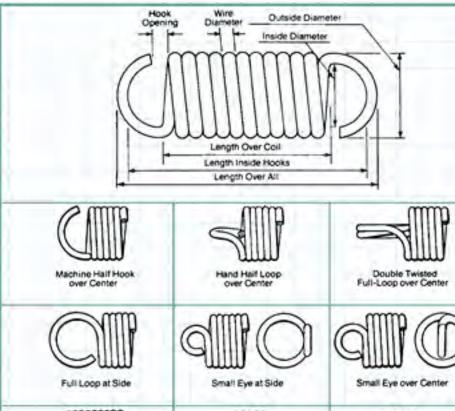


Total Cors - Active Code (No.

Specifications for Torsion Springs

When ordering, please give the following information as completely as possible:

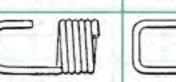
- Inside outside diameter
- If spring works on a rod, give size of rod, as spring must not bind when wound up to its limit of travel
- Free length and number of coils. If spring cannot increase in length as wound up, allow sufficient space between coils
- Right or left hand wound
- · Wire size decimal size if possible
- Material type and grade
- Style of ends (see i lustrations)
- Number of turns deflection to hold given load and radius of loaded arm. This length is may be the length of the arm, or the arm may be attached to a movable madice member in which case the length to application point of the load is given
- · Finish (plain unless otherwise specified)

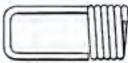

Specifications for Extension Springs

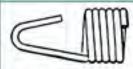
When ordering, please give the following information as completely as possible:

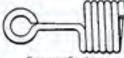
- Length maximum/minimum (over all, over coil, inside hooks)
- Controlling diameter outside diameter maximum, inside diameter minimum
- Wire size decimal size if possible
- Material type and grade
- Number of coils
- Style of ends (see illustrations)
- Right or left hand wound
- Finish (plain unless otherwise specified)
- Load required length inside hooks (length of coil if wire size not specified)
- Maximum extended length over all, over coil, inside hooks
- Deflection or distance of travel
- Frequency of extension
- Is position of ends important? (Making the ends of springs bear a definite relation to each other usually adds to the cost of manufacture)

Note: Extension springs made from tempered or hard-drawn wires can be and usually are wound with initial tension. Such tension may average 20% of the total safe stress of the springs, but will not increase the elastic limit.


To determine coil direction, hold with axis of spring on horizontal plane. Angle of coil from top to bottom

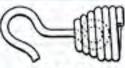


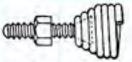


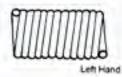


Long Square End Hook over Center

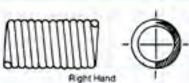
V Hook over Center


Extended Eye from either Center or Side Straight End Anneald to allow Forming


Coned End to Hold Long Swivel Eye


Coned End with

Coned End with


Coned End with

Coil Direction

determines direction.

Machine Loop and Machine

Full Loop on Side and Small Eye from Center

Machine Loop and Machine Hook Shown at Right Angles

Properties of Common Spring Materials

		-			-ADVIDEN					
		Tensile Properties		Torsional Properties		Maximum				
		Nominal Analysis	Minimum Tensile Strength	Modulus of Elasticity E	The second second	Modulus in Operating Torsion G Temperate psi x 10 ⁶ (MPa x 10 ³) "F	1		Water and the same	
Mater	Material		psi x 10 ³ ps (MPa) (N	psi x 10 ⁶ (MPa x 10 ³)	Minimum Tensile		°F.	"С	Rockwell Hardness	Method of Manufacture Chief Uses Special Properties
Spring Wire	Music Wire ASTM A 228	C 0.70-1.00% Mn 0.20-0.60%	230-399 (1586-2751)	30 (207)	45	11.5 (79.3)	250	121	C41-60	Cold drawn high and uniform tensile. High quality springs and wire forms. Suitable for cyclic applications.
	Hard Drawn ASTM A 227	C 0.45-0.85% Mn 0.60-1.30%	CLI 147-283 (1014-1951) CLII 171-324 (1179-2234)	30 (207)	40	11.5 (79.3)	250	121	C31-52	Cold drawn. Average stress applications. Lower cost springs and wire forms.
n Sprin	High Tensile Hard Drawn ASTM A 679	C 0.65-1.00% Mn 0.20-1.30%	238-350 (1641-2413)	30 (207)	45	11.5 (79.3)	250	121	C41-60	Cold drawn. Higher quality springs and wire forms.
High Carbon	Oil Tempered ASTM A 229	C 0.55-0.85% Mn 0.60-1.20%	CLJ 165-293 (1138-2020) CLJI 191-324 (1317-2234)	30 (207)	45	11.5 (79.3)	250	121	C42-55	Cold drawm and heat treated before fabrication. General purpose spring wire.
	Carbon Valve ASTM A 230	C 0.60-0.75% Mn 0.60-0.90%	215-240 (1482-1655)	30 (207)	45	11.5 (79.3)	250	121	C45-49	Cold drawn and heat treated before fabrication. Good surface condition and uniform tensile. Suitable for cyclic applications.
ee!Wire	Chrome Vanadium ASTM A 231	C 0.48-0.53% Cr 0.80-1.10% SI 0.15 Min%	190-300 (1310-2069)	30 (207)	45	11.5 (79.3)	425	218.5	C41-55	Cold drawn and heat treated before fabrication. Used for shock loads and moderately elevated temperature.
Alloy Steel Wire	Chrome Silicon ASTM A 401	C 0.51-0.59% Cr 0.60-0.80% Si 1.20-1.60%	235-300 (1620-2069)	30 (207)	45	11.5 (79.3)	475	246	C48-55	Cold drawn and heat treated before fabrication. Used for shock loads and moderately elevated temperature.
W	AISI 302/304 ASTM A 313	Cr 1719.% Ni 810.%	125-325 (862-2241)	28 (193)	35	10 (69.0)	550	288	C35-45	Cold drawn general purpose corrosion and heat resistant, Magnetic in spring temper.
Steel W	AISI 316 ASTM A 313	Cr 1618.% Ni 1014.% Mo 23.%	110-245 (758-1689)	28 (193)	40	10 (69.0)	550	288	C35-45	Cold drawn. Heat resistant and better corrosion resistance than 302. Magnetic in spring temper.
Stainless	17-7 PH ASTMA A 313 (631)	Cr 16,-18.% Ni 6,5-7.5% A1 0,75-1.5%	Cond CH 235-335 (1620-2310)	29.5 (203)	45	11 (75.8)	650	343	C38-57	Cold drawn and precipitation hardened after fabrication. High strength and general putpose corrosion resistance. Slightly magnetic in spring temper.
	Phosphor Bronze Grade A ASTM 8 159	Cu 94.96% Sn 4.6%	105-145 (724-1000)	15 (103)	40	6.25 (43.1)	200	93.3	B98-104	Cold drawn. Good corrosion resistance and electrical conductivity.
Alley Wite	Beryllium Copper ASTM B 197	Cu 98% Be 2%	150-230 (1034-1586)	18.5 (128)	45	7.0 (48.3)	400	204	C35-42	Cold drawn and may be mill hardened before fabrication. Good corrosion resistance and electrical conductivity. High physicals.
Non-Territos Alliay	Monel 400 AMS 7233	NI 66% Cu 31.5% C/Fe	145-180 (1000-1241)	26 (179)	40	9.5 (65.5)	450	232	C23-32	Cold drawn. Good corrosion resistance at moderately elevated temperature.
呈	Model K 500 QQ-N 286	Ni 65.0% Cu 29.5% C/Fe/A1/Ti	160-200 (1103-1379)	26 (179)	40	9,5 (65.5)	550	288	C23-35	Excellent corrosion resistance at moderately elevated temperature.
ż	A 286 Alloy	NI 26.% Cr 15.% Fe 53%	160-200 (1103-1379)	29 (200)	35	10.4 (71.7)	950	510	C35-45	Cold drawn and precipitation hardened after fabrication. Good corrosion resistance at elevated temperature.
e Alloy W	Inconel 600 0Q - W - 390	Ni 76.% Cr 15.8% Fe 7.2%	170-230 (1172-1586)	31 (214)	40	11.0 (75.8)	700	371	C35-45	Cold drawn and precipitation hardened at elevated temperature.
High Respection	Inconel 718	NI 52.5% Cr 18.6% Fe 18.5%	210-250 (1448-1724)	29 (200)	40	11,2 (77,2)	1100	593	C45-50	Cold drawm and precipitation hardened after fabrication. Good corrosion resistance at elevated temperature.
	Inconel x 750 ASM 5698, 5699	Ni 73.% Cr 15.% Fe 6.75%	No. IT 155 Min. (1069) Spg. T 190-230 (1310-1586)	31 (214)	40	12 (82.7)	750-1100	399-593	C34-39 C42-48	Cold drawn and precipitation hardened after fabrication. Good corrosion resistance at elevated temperature.

ISO 9001 Certified ITAR Registered

1105 Thompson Avenue McKees Rocks, PA 15136-3818 Phone: 1.412.331.3353 Toll Free: 1.800.828.3353 Fax: 412.331.1602

E-mail: aceinfo@acewirespring.com www.acewirespring.com